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Abstract
1.	 Natural selection can only occur if individuals differ in fitness. For this reason, 

the variance in relative fitness has been equated with the ‘opportunity for selec-
tion’ (I  ), which has a long, albeit somewhat controversial, history. In this paper 
we discuss the use/misuse of I and related metrics in evolutionary ecology.

2.	 The opportunity is only realised if some fraction of I is caused by trait variation. 
Thus, I > 0 does not imply that selection is occurring, as sometimes erroneously 
assumed, because all fitness variation could be independent of phenotype.

3.	 The selection intensity on any given trait cannot exceed 
√

I, but this upper limit 
will never be reached because (a) stochastic factors always affect fitness, and (b) 
there might be multiple traits under selection.

4.	 The expected magnitude of the stochastic component of I is negatively cor-
related with mean fitness. Uncertainty in realised I is also larger when mean 
fitness or population/sample size are low. Variation in I across time or space thus 
can be dominated (or solely driven) by variation in the strength of demographic 
stochasticity.

5.	 We illustrate these points using simulations and empirical data from a popula-
tion study on great tits Parus major. Our analysis shows that the scope for fecun-
dity selection in the great tits is substantially higher when using annual number 
of recruits as the fitness measure, rather than fledglings or eggs, even after ad-
justing for the dependence of I on mean fitness. This suggests nonrandom sur-
vival of juveniles across families between life stages. Indeed, previous work on 
this population has shown that offspring recruitment is often nonrandom with 
respect to clutch size and laying date of parents, for example.

6.	 We conclude that one cannot make direct inferences about selection based on 
fitness data alone. However, examining variation in Δ IF (the opportunity for fe-
cundity selection adjusted for mean fitness) across life stages, years or environ-
ments can offer clues as to when/where fecundity selection might be strongest, 
which can be useful for research planning and experimental design.
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1  |  INTRODUC TION

In a 1958 paper about natural selection in humans (Crow,  1958), 
James Crow showed that the squared coefficient of variation in 
absolute fitness W, equivalent to the variance in relative fitness w 
(w = W ∕W ), places an upper limit on the rate of evolutionary adap-
tation (see also O'Donald, 1970): 

Crow called this ‘the index of total selection’, which he denoted by the 
symbol I , but it subsequently became known as the ‘opportunity for 
selection’ (Arnold & Wade, 1984).

I  is a relevant parameter in the context of eco-evolutionary dy-
namics and population responses to environmental change, insofar 
as it constrains the degree to which evolution can shift trait distri-
butions and increase mean fitness W  (and hence population growth). 
However, I > 0 is a necessary but not sufficient condition for selec-
tion on traits other than fitness itself. Selection on a given trait only 
occurs when some of the variation in fitness is caused by variation 
in the trait (Figure  1). Demographic stochasticity can account for 
a large and variable fraction of I  (van Daalen & Caswell, 2019), so 
making inferences about the strength or drivers of selection based 
on the variance in fitness alone is problematic. This wider point 
has been made before in the context of sexual selection (Jennions 
et al., 2012), but the arguments and subtleties—which apply to natu-
ral selection in general—might not be familiar to ecologists. Our goal 
in this paper is therefore to guide empiricists on these issues. We 
first briefly review evolutionary theory on I . We then use simula-
tions and empirical data on great tits to illustrate challenges relating 
to the interpretation of I  and related metrics, and finish by offering 
some take-home messages.

From an evolutionary perspective, I  is best measured via lifetime 
fitness (e.g. number of new-borns produced per new-born across its 
lifetime), as this will account for life-history trade-offs. However, I  
can be computed for any fitness component (e.g. survival, mating 
success, fecundity; Equation  (1) applies to any fitness variable W) 
and is then interpreted as the scope for selection via that component 

alone. We concentrate on survival and annual reproductive suc-
cess in our examples, but for more involved treatments that parti-
tion variance in lifetime reproductive success in various ways, see 
(Arnold & Wade, 1984; Waples, 2022a; Waples & Reed, 2022), and 
references therein.

2  |  THEORETIC AL INTERPRETATION OF I

I  is an important parameter in evolutionary biology because the se-
lection intensity on any given character cannot exceed 

√

I (Arnold 
& Wade, 1984), while the rate of evolution of fitness itself cannot 
exceed I  (Crow, 1958; O'Donald, 1970; van Daalen & Caswell, 2019). 
Traits affecting fitness can then also evolve if they are heritable. The 
selection differential S on a focal trait Z is defined as the covariance 
between w and Z, or equivalently as the mean of the trait values 
weighted by w, minus the mean unweighted trait value:

The selection intensity iZ is then simply the selection differential ex-
pressed in trait standard deviation units: iz = S ∕�Z. This can also be 
written as iz = �Z,w

√

I, where �Z,w is the correlation between trait and 
fitness. Because the absolute value of this correlation is constrained to 
be ≤ 1, this means that ∣ iz ∣ ≤

√

I. The upper bound of 
√

I will never be 
met, however, for at least three reasons. First, stochastic variation will 
explain some portion of fitness variation. Second, multiple indepen-
dent traits might be under selection, so each will only explain a fraction 
of the remainder. Third, the relationship between any given trait and 
fitness might be nonlinear (Figure 1c), such that the linear correlation 
between them is less than 1 (∣ 𝜌Z,w ∣ < 1) even if fitness is an entirely 
deterministic function of this one trait (M. Morrissey, pers. comm.).

When n traits affect fitness, a multiple regression equation 
can be used to describe their independent linear effects; that is, 
w = 1 + �1Z1 + �2Z2 + … �nZn + �, where the � coefficients cor-
respond to selection gradients and � is a noise term (Lande & 
Arnold, 1983). Nonlinear terms can be added but are ignored here 
for simplicity. iz for each trait can then be expressed as the sum of 

(1)CV
2

W
= �2

W
∕W

2
= �2

w
= I.

(2)S = �Z,w = Zw − Z.

F I G U R E  1  Phenotypic selection is associated with increased variation in fitness relative to a baseline scenario (a) where there is no 
relationship between trait and fitness (red dot indicates that expected fitness is constant). The second scenario (b) shows positive linear 
selection, with the red bar indicating the extent of trait-caused variation in expected fitness (which would be the same if the sign of the 
slope was reversed). On top of a linear component, there might be a nonlinear component to selection (c). The linear correlation between 
trait and expected fitness is then <1. Demographic stochasticity and/or independent selection on other traits adds random scatter to these 
relationships (not shown here for simplicity).
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a direct component plus one or more indirect components owing 
to phenotypic correlations with other traits. For example, with 
two traits we have: iz1 = ��

1
+ ��

2
�1,2 and iz2 = ��

2
+ ��

1
�2,1 (where 

�′
1
 and �′

2
 are variance-standardised selection gradients; Lande & 

Arnold, 1983). Note that unlike ∣ iZ ∣, ∣ ��
Z
∣ can exceed 

√

I because the 
indirect component of selection can be opposite in sign to the direct 
component. The statistical contribution of each trait to the overall 
variance in relative fitness is then given by the product iz�′Z, which 
equals iz

2 when indirect selection is absent (Moorad & Wade, 2013).
Two lines of evidence suggest the lion's share of I  might be attrib-

utable to stochastic variation in fitness. First, quantitative genetic 
studies have estimated that the heritability of fitness h2(w) (fraction 
of I  explained by additive genetic effects) is low, typically on the order 
of a few per cent (Bonnet et al., 2022; Hendry et al., 2018). Second, 
even if many traits are under selection, they collectively might still 
explain relatively little of I . Assume, for argument's sake, that 10 
independent traits are under linear selection and iz = 0.16 for each 
(the median selection intensity reported by Kingsolver et al., 2001). 
The total contribution to I  is then 10*(0.162) = 0.26; overall I  is then 
this plus some stochastic component. The stochastic component will 

vary within and across studies, but one way of estimating the typical 
magnitude of overall I  is to make use of the equation I = IA(w)

h2(w)
, where 

IA(w) is the additive genetic variance in relative fitness, equivalent to 
the evolvability of fitness (Hansen & Houle, 2008). Using the median 
values for IA(w) and h2(w) of 0.10 and 0.03, respectively, reported 
by Bonnet et al. (2022), we have I = IA(w)

h2(w)
=

0.10

0.03
= 3.33. Our 10 traits 

would thus together explain only 8% (100∗ 0.26

3.33
) of I , the rest being 

attributable to stochastic variation in fitness. This toy example of 
course makes a lot of assumptions, but it illustrates how stochastic 
effects can dominate I  even with 10 traits under moderate selection.

3  |  THE DEPENDENCE OF I  ON ME AN 
FITNESS

A major limitation when comparing I  across different contexts 
(populations, years, fitness variables) is that it is highly sensitive to 
mean fitness W  (Downhower et al., 1987), as W2 features in its de-
nominator (Equation (1); Figure 2). No selection might occur on any 
trait in any environment, yet I  can still vary simply because W  and/

F I G U R E  2  The opportunity for selection is inversely related to mean fitness, and uncertainty in I  is higher when mean fitness is lower, or 
population size N is smaller. Each panel shows results of null simulations in which all fitness variation was assumed to be stochastic. Panels 
(a) and (b): The opportunity for viability selection IM plotted as a function of the survival rate p. For each of 50 different values of p, N = 50 
(a) or N = 500 (b) individuals were simulated, where each had the same expected survival. Realised survival was determined by drawing a 
random number from a standard uniform distribution and killing the individual if this number was < p. This was repeated 10,000 times to 
generate approximate 95% confidence intervals (grey bands) for IM. Panels (c–f): Results of simulations in which the number of offspring k for 
each of N = 50 (c, e) or N = 500 (d, f) parents was simulated by drawing from a Poisson distribution of mean and variance equal to k.  
10,000 replicate simulations were performed for each of 50 different k values, to generate approximate 95% confidence intervals for the 
opportunity for fecundity selection IF (C,D) and the adjusted metric, Δ IF , of Waples (2020). Black curves in all panels are mean values across 
replicate simulations.
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or �2
W

 (demographic stochasticity) varies. If selection does occur, 
it can be stronger in harsher, or human-disturbed, environments 
where W  is lower (Fugère & Hendry,  2018; Hunter et al.,  2018; 
Reiss,  2013), because W  features in the denominator of the se-
lection differential (which can be reformulated in absolute fitness 
terms as S = cov(W ,Z)∕W ). Stronger selection is not guaranteed at 
lower W , however, because cov(W ,Z) might also be lower when W  is 
lower (e.g. if fitness reductions are proportional across individuals; 
Fugère & Hendry, 2018). In general, ecological changes can affect S 
via changes in the mean or variance of the trait distribution, or via 
changes in the intercept or slope of the trait-absolute fitness rela-
tionship (Hunter et al., 2018).

Even if selection on a given trait varies in intensity as W  changes, 
I  and iZ might still be only weakly coupled. Multiple traits will typically 
be under selection, and if selection intensities on each are uncor-
related (or weakly correlated) across environments this effectively 

adds noise to the expected positive relationship (Figure 3) between I  
and iZ

2 for any given trait. The stochastic component of I  will also be 
highly variable in magnitude. Its expected value will be some func-
tion of W , owing to mean–variance scaling for non-Gaussian fitness 
variables such as survival and reproductive success (Figure 2). Its re-
alised magnitude, for a given W , will also vary randomly around this 
expectation (Section 4; Figure 2). Systematic and/or random varia-
tion in the magnitude of demographic stochasticity thus render rela-
tionships between I  and explanatory variables of interest vulnerable 
to misinterpretation (Jennions et al., 2012).

With binary fitness variables like survival, the variance equals 
p(1 − p), where p is the survival rate. The opportunity for viabil-
ity selection (IM, where the m stands for mortality) is then given 
as IM =

p(1− p)

p2
=

1− p

p
 (Crow,  1958). For a given p, IM will always be 

the same, regardless of whether there is a nonrandom (e.g. trait-
determined) component to mortality or not, because latent variation 

F I G U R E  3  Simulations illustrating the relationship between IF and iz
2 (squared selection intensity). The logarithm of the expected number 

of offspring W for each of N parents was defined as a linear function of an arbitrary parental trait Z: ln(W) = a + bZ. This was converted 
to realised integer number of offspring k by drawing from a Poisson distribution: k ~ pois(W). IF was then computed as the variance in k 
divided by k2. Six scenarios were explored by setting N = 50 (panel a–c) or N = 500 (d–f) and k = 1 (a, d), k = 2 (b, e) or k = 4 (c, f). In each 
scenario, five strengths of selection were simulated by varying b from 0 to 0.3 in steps of 0.075. Note that b (the log-scale slope of the 
fitness function) corresponds to the selection gradient (Morrisey & Goudie Evolution) and in this case also to iz, as Z was drawn from a normal 
distribution of zero mean and unit variance. The intercept of the fitness function in each scenario was fixed at the natural logarithm of the 
desired k. Mean realised I  (filled dots) and its confidence intervals (grey bands) across 10,000 replicate simulations per selection strength 
were then calculated. Solid line = theoretically expected I , which is the sum of the trait-determined component (i2

z
 ) and the expected 

stochastic component (1∕k in this case, because a Poisson null model was assumed; note that assuming over- or underdispersion in random 
reproductive success would simply shift the intercepts of the relationships in each plot). Dashed lines = approximate theoretical confidence 

intervals on I  (lower = i2 − 2

√

2∕
(

Nk
2
)

 ; upper = i2 + 2

√

2∕
(

Nk
2
)

; see Appendix S1).
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in a Bernoulli variable is unobservable. If all one has is data on sur-
vival, there is no way to correct IM for its dependence on mean sur-
vival (Figure 2) to try to get at the nonrandom component.

The opportunity for fecundity selection IF can in theory be cor-
rected for its dependence on (population or sample) mean fecundity. 
Let k be the number of offspring produced per parent in a single re-
productive bout, or across a full breeding season, that survive to the 
age at which juveniles are counted. An adjusted IF can then be com-
puted as Δ IF = IF − 1∕k (Waples, 2020). Note that here we are defin-
ing ‘fecundity’ broadly as the product of zygote number and offspring 
survival to the stage at enumeration. We acknowledge that assign-
ing offspring survival as a component of parental fitness is prob-
lematic from a quantitative genetic theory perspective (Thomson & 
Hadfield, 2017) but argue that computing Δ IF for such ‘mixed fitness’ 
measures still is useful as an overall index of potential for selection 
to be acting. Under a Wright–Fisher model—a mainstay of classical 
population genetics— k is approximately Poisson distributed when re-
productive success is purely random (i.e. �k2 ≈ k). The expected null 
value of IF is then 1∕k, so subtracting this quantity from raw IF not only 
corrects for the dependence on k, but also for the magnitude of de-
mographic stochasticity expected under Wright–Fisher reproduction, 
under which E

(

Δ IF
)

= 0 (Waples,  2020). Thus positive Δ IF values 
suggest, but do not prove, that something interesting might be going 
on. Assuming a Poisson distribution in the null case will not always 
be warranted: k might be underdispersed (𝜎k2 < k) or overdispersed 
(𝜎k2 > k) in some species/populations even if reproductive success is 
purely random (Kendall & Wittmann, 2010; Waples & Reed, 2022). 
Thus, negative, or positive, Δ IF values might be expected absent any 
selection, and deviations from a given expectation can also occur by 
chance (Figure 2; Section 4).

Given these limitations, interpreting absolute values of Δ IF 
is problematic, but comparing relative values across contexts 
where k varies can be informative. Regardless of the magnitude 
of overdispersion expected under a given null model, raw IF is ex-
pected to be higher when k is lower, even if selection is always 
absent. The same is not true of Δ IF, however. If the overdispersion 
parameter � (� = �k

2
∕k) varies across environments, as expected 

if selection intensities vary, E
(

Δ IF
)

 will in turn also vary (but note it 
might be nonzero even in environments where selection is absent). 
Changes in Δ IF therefore more reliably indicate changes in the 
true opportunity for selection than do changes in raw IF (Table 1). 
Nevertheless, there remains no free lunch. The only way to show 
that selection intensities on a given trait of interest do in fact vary 
is to test for variation in the slope of the relationship between 
trait and relative fitness (Morrissey & Hadfield,  2012; Wade & 
Kalisz, 1990), which obviously requires phenotypic information as 
well as fitness information.

Above, we defined k as the number of offspring per parent sur-
viving up to a particular point. The later in life offspring are counted, 
the lower k will be, and thus the higher raw IF will be. Consider a highly 
fecund species such as cod that produces hundreds of thousands of 
eggs. For a given level of real fitness differences among parents, IF 
computed via number of eggs will be tiny, whereas IF computed via 
number of juveniles surviving a full year will be much larger. On the 
one hand, this makes biological sense, in that the more offspring mor-
tality that has accrued, the higher the maximum possible selection in-
tensities on parental traits influencing offspring survival. On the other 
hand, offspring survival might be purely random with respect to pa-
rental phenotype, in which case the true scope for selection does not 
actually increase just because offspring are enumerated at older ages. 

TA B L E  1  Numerical example based on hypothetical reproductive success data. The opportunity for fecundity selection, IF, is higher when 
juveniles are counted at a later life stage (stage B) at which both the mean (k) and variance (�k2) in offspring number is lower, relative to stage 
A. This increase in IF occurs regardless of whether the intervening offspring mortality is completely random (scenario 1) or not (scenario 
2). In contrast, Δ IF only increases in scenario 2, reflecting a real increase in the (adjusted) opportunity for selection. In both scenarios, we 
assume arbitrarily that there is overdispersion at stage A, but we make no assumptions regarding whether this stems from heritable or 
nonheritable sources of variation. Random offspring mortality between stages A and B shrinks any initial overdispersion (𝜑 > 1) towards the 
Poisson expectation of � = 1. This shrinkage is less pronounced in scenario 2, as offspring mortality now has a nonrandom component. Also 
shown is the scaled overdispersion parameter of Crow & Morton, 1955, computed as ��

= 1 +
kB

kA

(

�A − 1
)

, which rescales �A to its expected 
value given observed k at life stage B assuming intervening mortality is random. The most informative comparison (highlighted in bold) is 
between �′ at stage A and observed � at stage B. In scenario 1, �B = ��A, so there is no evidence for selection between stages. In scenario 2, 
however, 𝜑B > 𝜑′A, indicating nonrandom survival (which might be due to selection, but phenotypic information is then required to test this). 
Bootstrapping could be used to test whether a given difference between �B and �′A (or between Δ IF(B) and Δ IF(A)) is statistically significant 
(see main text)

Parameter Symbol

Scenario 1 (random mortality) Scenario 2 (nonrandom mortality)

Juvenile stage 
A

Juvenile stage  
B

Juvenile stage 
A

Juvenile stage  
B

Mean offspring number k 10 2 10 2

Variance offspring number �k
2 15 2.2 15 2.8

Overdispersion parameter � 1.5 1.1 1.5 1.4

Scaled overdispersion par. �′ 1.1 — 1.1 —

Opportunity for selection IF 0.15 0.55 0.15 0.70

Adjusted opportunity for selection Δ IF 0.05 0.05 0.05 0.10
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Again, Δ IF offers some advantages over raw IF: comparing Δ IF across 
consecutive offspring life stages can provide insights as to whether 
any intervening mortality is random or not (Table 1). An increase in Δ IF 
above that expected by chance (see Section 5) suggests that selection 
might be occurring in the intervening period, but equally it might have 
nothing to do with the phenotype of parents (or offspring). For exam-
ple, offspring from the same parents will co-occur in space for some 
period in ontogeny (e.g. siblings sharing a nest or parental territory), so 
entire families can live or die as units owing to random catastrophes or 
variation in habitat quality.

As well as being sensitive to population (i.e. true) k, raw IF is 
also sensitive to sample k. Owing to constraints on study design, it 
might be possible to sample only a random subset of all offspring 
alive at a given age/stage. If sampling effort varies, this will pro-
duce variation in k estimates that has nothing to do with biology. 
Randomly sampling offspring at an early life stage is statistically 
equivalent to enumerating all offspring at some later life stage 
after which random mortality has occurred (as in Table 1, Scenario 
1). E

(

Δ IF
)

 at this early life stage will be the same regardless of sam-
pling effort, but the same is not true for E

(

IF
)

. Sampling a smaller 
fraction of offspring will bias IF upwards (because sample k is lower 
relative to true k), giving the false impression of more scope for 
selection, whereas Δ IF is unbiased in this regard. Note that if trait 
information is available, phenotypic selection estimates are not 
biased by lower sampling effort, but their uncertainty would be 
higher.

4  |  UNCERTAINT Y IN I

For a given mean fitness, the realised value of I  will vary randomly 
around some expectation owing to sampling effects. Uncertainty in 
the stochastic component of I  is higher when W  is lower (Figure 2). 
For a given W , uncertainty is also higher when population or sample 
size is lower. When selection occurs on one or more traits, sampling 
variation around the true selection intensities (i.e. population values 
of iZ) will in turn be higher when W  and/or sample size is lower. In 
other words, phenotypic selection is itself a stochastic process, and 
the realised magnitude of the trait-determined component of I  in any 
given environment will depend on the realised selection pressures.

To illustrate these points, we simulate a simple scenario where 
a single trait Z is under linear selection via variation in offspring 
number k. One way to model this is to work with expected fitness 
W on the natural logarithm scale (Morrissey & Goudie, 2016), such 
that negative values are impossible: ln(W) = a + bZ, where a is the 
intercept and b the slope of the individual fitness function. Expected 
absolute number of offspring is then given by W = exp(a + bZ), and 
this can be converted into a random variable by assuming some sto-
chastic process. Here, for simplicity, we assume a Poisson process  
(k ~ pois(W)), but any distribution could be used. This is conceptu-
ally equivalent to simulating a generalised Wright–Fisher model with 
weights given by W (Waples, 2022b). A range of selection intensities 
was produced by varying b across simulations, holding a constant at 

the log of the desired W  such that E
(

k
)

 was independent of selec-
tion strength (as might occur for example with soft selection; Bell 
et al., 2021).

As expected, the results showed that realised IF increased with 
iZ

2 (Figure 3). This relationship was always linear because E
(

k
)

 was 
constant within each scenario. Curved relationships would have in-
stead resulted if E

(

k
)

 varied within scenarios (e.g. by assuming some 
relationship between the a and b parameters), because the trait-
determined and stochastic components of IF would then no longer 
be independent. Uncertainty in IF across replicate simulations was 
larger when N was smaller or k was lower. The realised correlation 
between IF and iZ

2 for a given replicate was thus lower and more 
variable when N or k was lower. When selection was absent (iZ = 0), 
the sampling variance in IF (and Δ IF) was well approximated by 2∕Nk2 
(Appendix S1). With real-world data on some fitness variable, confi-
dence intervals around estimates of IF or Δ IF could be computed via 
bootstrapping (see Section 5).

5  |  ILLUSTR ATION OF EMPIRIC AL 
PAT TERNS WITH GRE AT TIT DATA

To illustrate key points made in previous sections, we exploit 
46 years (1973 to 2018) of individual-level reproductive success 
data from a Dutch study population (National Park de Hoge Veluwe, 
the Netherlands) of great tits Parus major (small songbirds common 
across Eurasia) see Visser et al.  (2021) and references therein for 
details on the study population and data collection methods. Annual 
reproductive output k per known (ringed) female was measured in 
three different ways: number of eggs (including second clutches 
but excluding replacement clutches), number of fledglings (juveniles 
surviving the nestling phase; all clutches included) and number of 
recruits (first-time breeders recorded in the study area the follow-
ing years; all clutches included). Birds that underwent experimen-
tal manipulations were excluded. Average values (across all females 
and years combined) for the same parameters listed in Table 1 were 
then calculated. Raw IF was an order of magnitude greater for re-
cruits compared to fledglings, which was in turn about twice that for 
eggs (Table 2). This simply reflects the fact that the biggest drop in k 
was between fledglings and recruits, given the substantial interven-
ing mortality. Overdispersion (�>1) was apparent for all three fit-
ness variables, particularly fledglings (Table 2). Note, however, that 
clutch/litter size is often underdispersed in other species (Kendall & 
Wittmann, 2010) and egg number might be underdispersed in other 
great tit populations, for example, those where second clutches are 
uncommon. The scaled overdispersion parameter (�’) of Crow and 
Morton (1955) was close to 1 for eggs and fledglings, indicating that 
random mortality up to the recruit stage would shrink initial overd-
ispersion (or grow initial underdispersion) towards the Poisson ex-
pectation of 1. However, unscaled � was 1.54 at the recruit stage, 
implying that intervening mortality was not completely random. 
Consistent with this, Δ IF was much higher for recruits, compared to 
fledglings or eggs.
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To assess whether the changes in Δ IF between stages were more 
than expected by chance (bootstrapped 95% confidence intervals 
(BCIs) nonoverlapping zero), a nonparametric bootstrapping proce-
dure was performed in which n = 100 ‘females-years’ (an instance of 
a particular female breeding in a particular year; some females breed 
across multiple years) were randomly sampled, with replacement, 
from all 2486 female-year records. The difference in Δ IF between 
each pair of stages (eggs-fledglings; fledglings-recruits; eggs-recruits) 
was then computed for this random sample, and this was repeated 
10,000 times to generate bootstrapped distributions. The observed 
increase in Δ IF between eggs and fledglings of 0.14 was more than 
expected by chance (lower BCI = 0.06; upper BCI = 0.23). The same 
was true for the difference in Δ IF between fledglings and recruits 
(observed = 1.07; lower BCI = 0.14; upper BCI = 2.20), and for the 
difference in Δ IF between eggs and recruits (observed = 1.20; lower 
BCI = 0.28; upper BCI = 2.35).

Supporting evidence for a nonrandom component to reproduc-
tive success in this study population comes from the fact that annual 
number of recruits is repeatable across females (Reed et al., 2016). 
Laying date and clutch size are two heritable traits that explain some 
of this individual heterogeneity among females, with selection on 
each trait varying in intensity and to some extent sign across years 
(Reed et al., 2016; Sæther et al., 2016; Visser et al., 2021). Additional 
traits might be under selection, and the big jump in Δ IF between 
fledglings and recruits (Table 2) suggests that the combined fitness 
effects of all traits are strongest during the postfledgling period. 
Environmental factors shared by families can also increase Δ IF above 
the null expectation, but such ‘common environment effects’ are ex-
pected to be stronger during the nestling phase (when siblings are 
still together) than in the postfledgling phase. Across years, the cor-
relation between IF and iz

2 for laying date (both estimated via num-
ber of recruits) was weak (Spearman's r = 0.26) and not statistically 
significant (p = 0.08). Similarly, the correlation between IF and iz

2 for 
clutch size (both again estimated via number of recruits) was weak 
and not significant (Spearman's r = −0.08; p = 0.61). This suggests 
that the realised magnitude of demographic stochasticity varies 
substantially across years, and/or that selection on other unmea-
sured traits varies in intensity. Either way, the component of IF not 
explained by laying date or clutch size appears to be highly variable 
across years.
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7  |  DISCUSSION

I  remains theoretically relevant in population biology, in that it 
places a hard ceiling on the rate of evolutionary adaptation. The 
more salient parameter, although, is IA(w), as this captures the actual 
rate of evolutionary adaptation, that is, the genetic increase in mean 
fitness due to selection (Bonnet et al., 2022; Hendry et al., 2018). 
Given that most variation in fitness typically is nonheritable, and 
that the heritability of fitness (h2(w) = IA(w)∕ I) might vary unpredict-
ably across environments, I  is of limited practical utility for under-
standing/predicting evolutionary dynamics (Grafen, 1988). At best, 
it provides an answer to the question: ‘What is the maximum amount 
by which evolution could increase population growth in this environ-
ment?’, which might help guide management/conservation scenario-
planning, for example. I  also provides an answer to the question: 
‘How strong could selection be on any trait?’. The related OSM met-
ric of Pelletier and Coulson (2012) in turn provides an answer to the 
more specific question: ‘How strong could selection be on my par-
ticular study trait’. Again, however, knowing how strong things could 
be is of less practical utility than knowing how strong they in fact are.

More fundamentally, I > 0 simply cannot be taken as evidence 
for selection, as all fitness variation could be random with respect 
to (multivariate) phenotype. Variation in I  across ecological contexts 
also cannot be taken as evidence that selection is varying, as the 
only thing that might be varying is the magnitude of demographic 
stochasticity. If mean fitness varies, the stochastic component of I  
will then vary systematically, so realised I  is then an even-less reli-
able guide to selection. Similarly, if demographic stochasticity varies 
systematically with some putative environmental driver of selection, 
the scope for being misled is high (Jennions et al., 2012). Δ IF cor-
rects for dependence on mean offspring number but is also open to 
misinterpretation (Waples, 2020; Waples & Reed, 2022). Comparing 

TA B L E  2  Parameter estimates for the great tit data. See Table 1 legend and main text for parameter definitions. Mean and variance in 
offspring number estimated across all females and years combined, and other parameters calculated from these. Result very similar when 
parameters instead estimated within years and then annual values averaged across years. �′ for eggs and fledglings corresponds to their 
expected � values at the recruit stage (given observed mean number of recruits) if intervening mortality was random

Parameter Symbol Eggs Fledged Recruits

Mean offspring number k 9.76 6.24 0.44

Variance offspring number �k
2 13.33 13.13 0.67

Overdispersion parameter � 1.37 2.10 1.54

Scaled overdispersion par. �′ 1.02 1.08 —

Opportunity for selection IF 0.14 0.34 3.53

Adjusted opportunity for selection Δ IF 0.04 0.18 1.24
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relative values of Δ IF across situations where true or sample k varies 
can nonetheless give a more reliable indication of the true scope 
for selection than comparing raw IF. Our empirical example with 
the great tits—a system in which parental reproductive success is 
known to be nonrandom with respect to laying date and clutch size—
supported this latter contention.

Our simulations showed that the realised correlation between I  
and the squared selection intensity on a given trait can be weak and 
highly variable, especially when mean fitness or population/sample 
size are low. Indeed, with the great tits, IF was statistically uncor-
related with iZ

2 for both laying date and clutch size, despite 46 years 
of data. Few other studies seem to have explored this, but a study 
of water striders Aquarius remigis found a weak positive correlation 
(rs = 0.34, n = 24) between I  and standardised linear selection gradi-
ents on body size (Ferguson & Fairbairn, 2001). The data were quite 
heterogeneous, however, involving three different fitness variables, 
complicating the comparison with the great tit results. Pelletier and 
Coulson (2012) documented positive relationships between viability 
selection differentials on juvenile body size and IM in both red deer 
Cervus elaphus and Soay sheep Ovis aries, but the R2 values (0.30 and 
0.15, respectively, including outliers) were still relatively low (see 
also Martin et al., 2015).

In conclusion, we hope our arguments and examples have 
clarified the dangers of uncritically using I  and related metrics to 
make inferences about selection and its drivers. There is simply 
no free lunch: measuring selection requires data on phenotypes! 
Nevertheless, comparing I  across life stages or environments can 
provide hints as to where selection might be acting most strongly, 
with Δ IF being preferable to raw IF when k varies. This might in 
turn prompt further study or inform study design. If one does 
have phenotypic information from multiple years/locations, on 
top of paired fitness data, correlating squared selection intensities 
against I  can still be revealing. For example, if mean fitness is high 
and relatively constant, and population size is large, then variabil-
ity in the stochastic component of I  should be low. A low correla-
tion between I  and iZ

2 for a focal trait would then imply variable 
selection intensities on one or more unmeasured traits. Wider 
reporting of the mean and variance of absolute fitness (by year/
location), as well as the mean and variance of any measured traits 
and their relationship with absolute fitness (Hunter et al., 2018), 
will allow for improved general understanding of the ecological 
drivers of selection.
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